Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631709

RESUMO

BACKGROUND: Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS: To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS: Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS: The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.


Assuntos
Arenavirus , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus , Arenavirus/metabolismo , Neoplasias/terapia , Modelos Animais de Doenças , Terapia de Imunossupressão , Microambiente Tumoral
2.
Blood Adv ; 3(13): 1989-2002, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270081

RESUMO

Signal transducer and activator of transcription 3 (STAT3) exists in 2 alternatively spliced isoforms, STAT3α and STAT3ß. Although truncated STAT3ß was originally postulated to act as a dominant-negative form of STAT3α, it has been shown to have various STAT3α-independent regulatory functions. Recently, STAT3ß gained attention as a powerful antitumorigenic molecule in cancer. Deregulated STAT3 signaling is often found in acute myeloid leukemia (AML); however, the role of STAT3ß in AML remains elusive. Therefore, we analyzed the STAT3ß/α messenger RNA (mRNA) expression ratio in AML patients, where we observed that a higher STAT3ß/α mRNA ratio correlated with a favorable prognosis and increased overall survival. To gain better understanding of the function of STAT3ß in AML, we engineered a transgenic mouse allowing for balanced Stat3ß expression. Transgenic Stat3ß expression resulted in decelerated disease progression and extended survival in PTEN- and MLL-AF9-dependent AML mouse models. Our findings further suggest that the antitumorigenic function of STAT3ß depends on the tumor-intrinsic regulation of a small set of significantly up- and downregulated genes, identified via RNA sequencing. In conclusion, we demonstrate that STAT3ß plays an essential tumor-suppressive role in AML.


Assuntos
Suscetibilidade a Doenças , Leucemia Mieloide Aguda/etiologia , Fator de Transcrição STAT3/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Imuno-Histoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Prognóstico , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Cytokine ; 118: 27-34, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30031681

RESUMO

Signal transducer and activator of transcription (STAT) 3 is the main mediator of IL-6-type cytokine signaling and an important transcriptional regulator of cell proliferation, maturation and survival. It has been described as a key player in cancer development and progression. However, under certain circumstances, STAT3 is also considered a potent tumor suppressor. This heterogeneity partially depends on its expression as different isoforms. Alternative splicing gives rise to two STAT3 isoforms, STAT3α and its truncated version STAT3ß. Both isoforms are transcriptionally active and display distinct functions under physiological and pathological conditions. In fact, while STAT3α is widely described as an oncogene, STAT3ß has gained attention as a potential tumor suppressor. This review provides a concise overview of the current knowledge on STAT3 during tumorigenesis, with special emphasis on the unique and complex roles of its alternatively spliced isoforms.


Assuntos
Neoplasias/genética , Isoformas de Proteínas/genética , Fator de Transcrição STAT3/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Humanos , Neoplasias/patologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...